DPP-5 (Work, Energy \& Power)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/38

https://youtu.be/pqSwR5H6gMY

https://physicsaholics.com/note/notesDetalis/43

Q 1. A body slides down a frictionless track which ends in a circular loop of diameter D, then the minimum height h of the body in term of D so that it may just complete the loop, is
(a) $\mathrm{h}=\frac{5 D}{2}$
(b) $\mathrm{h}=\frac{5 D}{4}$
(c) $\mathrm{h}=\frac{3 D}{4}$
(d) $\mathrm{h}=\frac{D}{4}$

Q 2. A car moving with speed $30 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 500 m . Its speed is increasing at the rate of $2 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration of the car is
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $1.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $2 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.7 \mathrm{~m} / \mathrm{s}^{2}$

Q 3. A stone tied to the end of a string which is 80 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in $25 s$, Find work done by tension on stone
(a) 9.91 J
(b) 14 J
(c) 12.69 J
(d) zero

Q 4. The string of pendulum of length l is displaced through 90° from the vertical and released. Then the minimumstrength of the string in order to withstand the tension, as the pendulum passes through the mean position is
(a) mg
(b) 3 mg
(c) 5 mg
(d) 6 mg

Q 5. A frictionless track $A B C D E$ ends in a circular loop of radius R. A body slides down the track from point A which is at height $h=5 \mathrm{~cm}$. Maximum value of R for a body to complete the loop successfully is

(a) 2 cm
(b) $\frac{10}{3} \mathrm{~cm}$
(c) $\frac{15}{4} \mathrm{~cm}$
(d) $\frac{18}{3} \mathrm{~cm}$

Q 6. A cube of mass M starts from rest from point 1 at a height $4 R$, where R is the radius of the circular track. The cube slides down on the frictionless track and around the loop. The force which the track exerts on the cube at point 2 is:

(a) mg
(b) 2 mg
(c) 3 mg
(d) 4 mg

Q 7. A block shown in figure slides on a semicircular frictionless track. If it starts from rest at position A, what is its speed at the point marked B ? Take $g=10 \mathrm{~m} / s^{2}$
(a) $2.21 \mathrm{~m} / \mathrm{s}$
(b) $1.32 \mathrm{~m} / \mathrm{s}$
(c) $7.54 \mathrm{~m} / \mathrm{s}$
(d) $3.76 \mathrm{~m} / \mathrm{s}$

Q 8. A ball is released from point A as shown in figure. The ball leaves the track at B. All surfaces are smooth. If track makes an angle 30° with horizontal at B , then maximum height attained by ball will be

(a) 4 m
(b) 2 m
(c) 3 m
(d) 1 m

Q 9. A particle originally at rest at the highest point of a smooth vertical circle is slightly displaced. It will leave the circle at a vertical distance h below the highest point such that $\mathrm{h}=$?

(a) R
(b) $\frac{R}{3}$
(c) $\frac{2 R}{3}$
(d) $\frac{R}{2}$

Q 10. A small particle of mass m attached with a light inextensible thread of length L is moving in a vertical circle. In the given case particle is moving in complete vertical circle and ratio of its maximum to minimum velocity is $2: 1$. Velocity of the particle when it is moving vertically downward is

(a) $\sqrt{\frac{10 g L}{3}}$
(c) $\sqrt{\frac{8 g L}{3}}$
(b) $2 \sqrt{\frac{g L}{3}}$
(d) $\sqrt{\frac{13 g / 2}{3}}$

Q 11. A particle is given an initial speed u inside a smooth spherical shell of radius $R=1 \mathrm{~m}$ such that it is just able to complete the circle. Acceleration of the particle when its velocity is yertical is

(a) $g \sqrt{10}$
(b) g
(c) $g \sqrt{2}$
(d) $3 g$

Q 12. A pendulum bob on a 2 m string is displaced 60° from the vertical and then released. What is the speed of the bob as it passes through the lowest point in its path
(a) $\sqrt{2} \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{9.8} \mathrm{~m} / \mathrm{s}$
(c) $4.43 \mathrm{~m} / \mathrm{s}$
(d) $\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$

Q 13. A particle of mass m is attached to one end of a light inextensible string and the other end of the string is fixed in vertical plane as shown. Particle is given a horizontal velocity $u=\sqrt{\frac{5}{2} g l}$. The maximum angle made by string with downward vertical is

(a) $\cos ^{-1}\left(\frac{1}{4}\right)$
(b) $\sin ^{-1}\left(\frac{1}{4}\right)$
(c) $\frac{\pi}{2}+\sin ^{-1}\left(\frac{1}{4}\right)$
(d) $\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{4}\right)$

Answer Key

Q. 1 b	Q. 2 d	Q. 3 d	Q. 4 b	Q. 5 a
Q. 6 c	Q. 7 d	Q. 8 c	Q. 9 b	Q. 10 a
Q. 11 a	Q. 12 c	Q. 13 c		

